

Topic 2: Experiences of applying experimental design to simulation studies

Dipl.-Ing. Jürgen Teutsch, NLR, The Netherlands

FAA/EUROCONTROL Action Plan 5
Validation Practitioners' Workshop
Ocean Life Center, Atlantic City (NJ), USA

Contents

- MAEVA Approach
- Process of applying Experimental Design
- From Aims and Objectives...
- …to Experimental Design
- Measurement and Analysis Specification
- Prepared RT-HITL Simulation Platform

- Making Measurements
- Subjective Measurements
- Objective Measurements
- Observations
- Examples: AFAS, APPROVE, INTEGRA

MAEVA Approach (DEVAM)

- Step 1: Define the validation aims, objectives and hypotheses
- Step 2: Prepare the validation plan and prepare for exercise runs
- Step 3: Execute exercise runs and make measurements
- Step 4: Analyse results
- Step 5: Develop conclusions and disseminate

Process of applying Experimental Design

From Aims and Objectives...

- Aims, Objectives, Hypotheses
 - Understanding of ATM Problem and Concept
 - Identification of Stakeholders (Confidence)
 - What should be achieved (qualitatively and quantitatively)?
 - What should be measured (metrics)?
- Validation Platform Requirements
 - Scope, Resolution, Geographic Location, Time Frame
- Selection of Validation Technique and Platform
- High-Level Experimental Design

...to Experimental Design

- Experimental Design
 - Planning of Scenarios and Resources to meet Objectives
- Scenario Specification
 - Baseline, Advanced Concept, Geographic Area, Time
 Frame, Scripting of Events, Traffic Samples, Assumptions
- Outline Plan
 - Summary of Simulation Runs and Measurements
- Detailed Management Plan
 - Scope and Timing of Simulations, Formal Reference

Example: AFAS Validation Strategy

Example: APPROVE Validation Strategy

Measurement and Analysis Specification

- Support of Planning and Execution
- Summary of Measurements and Data Analysis
- Identification of Inconsistencies
- Review of Design Elements
 - Validation Aims (High Level Objectives)
 - Metrics and Measurements (Low Level Objectives and Hypotheses)
 - Data Analysis Methods (Statistical Significance)
 - Controller Requirements (Number of Controllers/Sectors)
 - Training (Level of Knowledge of Concept, Environment)

Example: INTEGRA Measurement Analysis

Prepared RT-HITL Simulation Platform

- Resemblance of Platform to Real-life Situation
 - Special HMIs and controller/pilot tools
 - Advanced functionality implemented
- Data Logging and Recording
- Measuring Equipment
- Input Data available according to Scenario Specification
- Trained Participants and Validation Team (Observers)

Making Measurements

- Shakedown Trial
 - Training, Debugging, Calibration
- Briefing of Participants before each Simulation Run
- Data Collection Methods
 - System Data, Physical Data Measurements from Participants, Subjective Data, Observation Data
- Types of Collected Data
 - Qualitative/Quantitative, Objective/Subjective, Intrusive/Non-intrusive, Binary/Not-binary, Nominal/Ordinal/Interval/Ratio-level

Subjective Measurements

- Data Obtained from Participants
 During the Exercise
 - ISA, SWAT, Secondary Task, Verbal Protocol
- Data Obtained from Participants
 After the Exercise
 - Questionnaires, Self
 Confrontation, Interview, Verbal
 Protocol, Brainstorming
- Data Types
 - Descriptions and Explanations,
 Tiredness, Stress, Workload,
 Usability, Situation Awareness,
 Acceptability

Objective Measurements

- Data Measured by Automated System
 - Logging of Aircraft Parameters (Simulated or Real A/C), Radar Tracks, R/T, Flight Plan Data, Number of A/C in Sector, Number of Clearances

Physical Data Measured

Physiological Measurements
 (Heart Rate, Brain Activity, Muscle
 Tension, Respiration, Skin
 Resistance, Pupil Changes,
 Biochemical Indicators) and
 Physical Movements (Eye
 Movement and Head Movement)

Observations

- Direct or Assisted Observations
 - Learning Time, Number of Errors or Help Requests, Verbal or Gestured Communication between Participants, Negotiation or Action Time

Use of Recording Facilities

- Video Recording
- Audio Recording
- Records taken by Validation
 Team Observers

Conclusions and Recommendations (Experiences and Lessons Learned)

- Good Understanding of ATM Concept Manifested in Operational Scenario Definition
- Unambiguous Determination of Validation Aims and Objectives
- Careful Selection of Hypotheses
- Careful Selection of Validation Platforms and Writing of an Outline Plan (Interrelations between Discrete Simulation Runs at Different Platforms)
- Good Match between Measurements and Analysis Method (MAS)
- Good Preparation of Simulation Participants and Observers
- Emergency Plan for Failing Systems